5.6 | Inverse Functions

Inverse Functions: Two functions f and g are said to be inverses and considered invertible if the following relationship holds:

$$(g \circ f)(x) = x = (f \circ g)(x)$$

Textbook Theorem 5.10. Properties of Inverse Functions: Suppose f is an invertible function.

- There is exactly one inverse function for f, denoted f^{-1} (read 'f-inverse')
- The range of f is the domain of f^{-1} and the domain of f is the range of f^{-1}
- f(a) = c if and only if a = f⁻¹(c)
 NOTE: In particular, for all y in the range of f, the solution to f(x) = y is x = f⁻¹(y).
- (a, c) is on the graph of f if and only if (c, a) is on the graph of f⁻¹
 NOTE: This means the graph of y = f⁻¹(x) is the reflection of the graph y = f(x) across y = x.
- f^{-1} is an invertible function and $(f^{-1})^{-1} = f$.

1. Verify that the following functions are inverses: f(x) = 2x + 7 and $g(x) = \frac{x - 7}{2}$

2. Verify that the following functions are inverses: $f(x) = \frac{5-3x}{4}$ and $g(x) = -\frac{4}{3}x + \frac{5}{3}$

3. Verify that the following functions are inverses: $f(x) = \frac{5}{t-1}$ and $g(x) = \frac{t+5}{t}$

4. Verify that the following function is its own inverse: $f(x) = \frac{t}{t-1}$

One-to-one: A function f is said to be one-to-one if whenever f(a) = f(b), then a = b.¹ This definition is very useful as it ties together well with the following theorem.

Textbook Theorem 5.11. Equivalent Conditions for Invertibility: For a function f, either all of the following statements are true or none of them are:

- f is invertible.
- f is one-to-one.
- The graph of f passes the Horizontal Line Test.^{*a*}

^{*a*}i.e., no horizontal line intersects the graph more than once.

How to find an inverse function: If we want to find an inverse of a function directly, we can use the following steps.

- Write y = f(x).
- Switch all instances of y with x and all instances of x with y.
- Solve for x = f(y) for y. This new equation is $y = f^{-1}(x)$.

¹The fancy math term for this is that f is *injective*.

5. Worked Example: Show that the following function is one-to-one and find its inverse: f(x) = 6x - 2

Scan the QR code for a video solution.

6. Show that the following function is one-to-one and find its inverse: $g(t) = \frac{t-2}{3} + 4 + 4$

7. Show that the following function is one-to-one and find its inverse: $f(x) = \sqrt{3x - 1} + 5$

8. Show that the following function is one-to-one and find its inverse: $f(x) = 2 - \sqrt{x-5}$

9. Show that the following function is one-to-one and find its inverse: $g(t) = \frac{3}{4-t}$

10. Show that the following function is one-to-one and find its inverse: $f(x) = \frac{2x-1}{3x+4}$

Materials in PAL are not a suitable replacement for materials in class. These materials are not for use on exams.