MATH1300 Selected Challenge Problems Volume II SOLUTIONS

Precalculus Peer Assisted Learning

October 22, 2024

Solution Preface:

I make no guarantee that these solutions are free of typos or errors. I have done my best to ensure they are all correct; however, you should always double-check my solutions with another resource if you are unsure whether they are accurate.

Function graphs in this packet are generated by a computer and may not look exactly like the ones you draw. Remember, you are not a computer. The most important skill to develop is your ability to analyze key information about the graph and use a sign diagram to sketch a relatively accurate picture.

Roman

A Let $f(z) = 4z^3 + 2z - 3$ and g(z) = z - 3

- i. Compute f(z)/g(z). $(4z^3 + 2z - 3) \div (z - 3) = (4x^2 + 12z + 38) R11$
- ii. Write f(z) as an expression involving g(z), a quotient, and remainder (if it exists). $(4z^3 + 2z - 3) = (z - 3)(4z^2 + 12z + 38) + 11$
- **B** Let $f(x) = 2x^3 x + 1$ and $g(x) = x^2 + x + 1$
 - i. Compute f(x)/g(x). $(2x^3 - x + 1) \div (x^2 + x + 1) = (2x - 2) R(3 - x)$
 - ii. Write f(x) as an expression involving g(x), a quotient, and remainder (if it exists). $(2x^3 - x + 1) = (2x - 2)(x^2 + x + 1) + (3 - x)$
- **C** Let $a(x) = x^4 6x^2 + 9$ and $b(x) = (x \sqrt{3})$
 - i. Compute a(x)/b(x). $(x^4 - 6x^2 + 9) \div (x - \sqrt{3}) = (x^3 + \sqrt{3}x^2 - 3x - 3\sqrt{3}) R0$
 - ii. Write a(x) as an expression involving b(x), a quotient, and remainder (if it exists). $x^4 - 6x^2 + 9 = (x^3 + \sqrt{3}x^2 - 3x - 3\sqrt{3})(x - \sqrt{3})$
- **D** Let $g(z) = z^3 + 2z^2 3z 6$ be a polynomial function with a known real zero of c = -2
 - i. Find the remaining real zeros of g(z) $z = -2, \sqrt{3}, -\sqrt{3}$
- **E** Let $x^3 6x^2 + 11x 6$ be a polynomial function with a known real zero of c = 1
 - i. Find the remaining real zeros of g(z)x = 1, 2, 3
- **F*** Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial function with the property that $a_n + a_{n-1} + \dots + a_1 + a_0 = 0$. (That is, the sum of the coefficients and the constant term is 0.)
 - i. Show that (x-1) is a factor of f(x).

Proof.

If (x-1) is a factor then f(1) = 0. Plug in x = 1 to f(x) to obtain $f(1) = (a_n)1 + (a_{n-1})1 + \cdots + (a_1)1 + (a_0)1$ which simplifies to $a_n + a_{n-1} + \cdots + a_1 + a_0$. By our assumption, $a_n + a_{n-1} + \cdots + a_1 + a_0 = 0$. So f(1) = 0 and thus (x-1) is a factor of f.

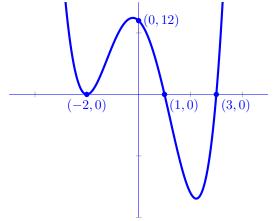
- **A** Let $f(x) = 36x^4 12x^3 11x^2 + 2x + 1$
 - i. Use Cauchy's Bound to find an interval containing all possible rational zeros. $\left[-\frac{4}{3},\frac{4}{3}\right]$
 - ii. Use the Rational Zeros Theorem to make a list of possible rational zeros. $\left\{\pm\frac{1}{1},\pm\frac{1}{2},\pm\frac{1}{3},\pm\frac{1}{4},\pm\frac{1}{6},\pm\frac{1}{9},\pm\frac{1}{12},\pm\frac{1}{18},\pm\frac{1}{36},\right\}$
 - iii. Use Descartes' Rule of Signs to list the possible number of positive and negative real zeros.

 $2 \ {\rm or} \ 0$ positive real zeros, $2 \ {\rm or} \ 0$ negative real zeros.

- **B** Let $p(z) = 2z^4 + z^3 7z^2 3z + 3$
 - i. Use the Rational Zeros Theorem to list possible roots of the polynomial. $\left\{\pm 3,\pm 1,\pm \frac{3}{2},\pm \frac{1}{2}\right\}$
 - ii. Write the polynomial in factored form. $(2z-1)(z+1)(z^2-3)$

C Let
$$g(x) = x^4 - 9x^2 - 4x + 12$$

- i. Sketch the graph of g(x).
- ii. Label all axis intercepts on the graph.



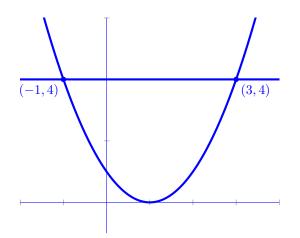
iii. Write the end behavior of g(x). as $x \to -\infty$, $f(x) \to \infty$ as $x \to \infty$, $f(x) \to \infty$

D Solve the following equation: $x^3 + x^2 = \frac{11x + 10}{3}$

$$x = -2, \frac{3 \pm \sqrt{69}}{6}$$

E Let $f(x) = (x - 1)^2$ and g(x) = 4

i. Graph f(x) and g(x) on the same coordinate plane.

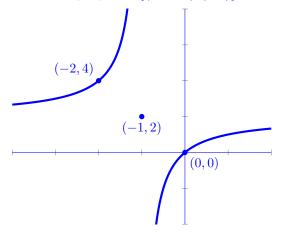


- ii. Solve the inequality $f(x) \ge g(x)$ graphically. $(-\infty, -1] \cup [3, \infty)$
- iii. Solve the inequality f(x) ≥ g(x) algebraically and verify that it matches the solution found in part (ii).
 (-∞, -1] ∪ [3,∞)
- **F** Solve the inequality: $\frac{x^3 + 20x}{8} \ge x^2 + 2$, express your answer in interval notation. {2} \cup [4, ∞)

- **A** Let $p(x) = 9x^3 + 5$ and q(x) = 2x 3
 - i. Divide $p(x) \div q(x)$ using synthetic division or long division. Synthetic division will make dealing with the fractions in this problem easier.
 - ii. Write p(x) in the form of d(x)q(x) + r(x). $(9x^3 + 5) = (2x - 3)\left(\frac{9}{2}x^2 + \frac{27}{4}x + \frac{81}{8}\right) + \frac{283}{8}$

B Let
$$p(x) = 4x^2 - x - 23$$
 and $q(x) = x^2 - 1$

- i. Divide $p(x) \div q(x)$ using synthetic division or long division. Must use long division as synthetic division will not work for non linear divisors.
- ii. Write p(x) in the form of d(x)q(x) + r(x). $4x^2 - x - 23 = 4(x^2 - 1) + (-x - 19)$
- **C** Let $h(x) = \frac{2x}{x+1}$.
 - i. Write h(x) in the form $\frac{a}{x-h} + k$. Use division to obtain $h(x) = 2 - \frac{2}{x+1}$
 - ii. Write the parent function P(x) of h(x). $P(x) = \frac{1}{x}$
 - iii. Track at least two points and the asymptotes from P(x) and use them to graph h(x). Choose sample points $\{(-1, -1), (1, 1)\}$ and track (0, 0) for asymptotes.



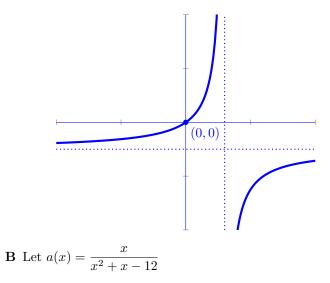
- **D** Let $r(x) = \frac{x^2 x 12}{x^2 + x 6}$
 - i. Identify any holes in the graph of r(x). $\left(-3, \frac{7}{5}\right)$
 - ii. Identify any vertical asymptotes in the graph of r(x). x = 2
 - iii. State the domain of r(x). $(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$

E Let
$$f(x) = \frac{x^3 + 2x^2 + x}{x^2 - x - 2}$$

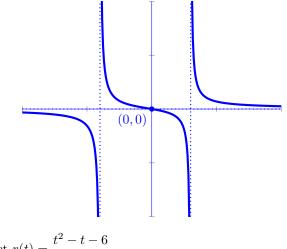
- i. Identify any holes in the graph of f(x). (-1,0)
- ii. Identify any vertical asymptotes in the graph of f(x). x = 2
- iii. State the domain of f(x). $(-\infty, -1) \cup (-1, 2) \cup (2, \infty)$
- **F*** Let u(x) be a function defined only on the positive real numbers. Let v(x) = (x a)(x + b) with 0 < a < b.
 - i. State the domain of $w(x) = \frac{u(x)}{v(x)}$ $(0, a) \cup (a, \infty)$

A Let $f(x) = 5x(6-2x)^{-1}$

i. Sketch the graph of f(x). Label all asymptotes, holes, and zeros.

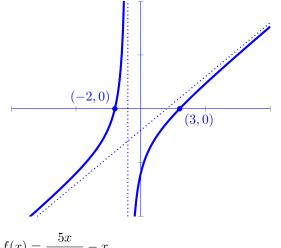


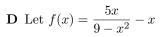
i. Sketch the graph of a(x). Label all asymptotes, holes, and zeros.



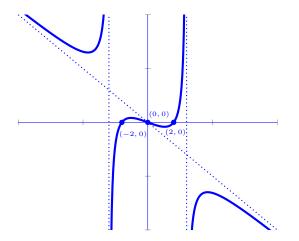
- **C** Let $r(t) = \frac{t^2 t 6}{t + 1}$
 - i. Sketch the graph of r(t). Label all asymptotes, holes, and zeros.

 $\mathbf{3.2}$



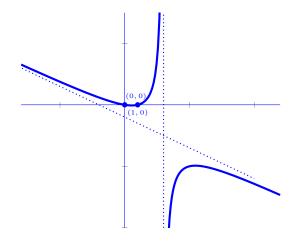


i. Sketch the graph of f(x). Label all asymptotes, holes, and zeros.



E Let $r(z) = -z - 2 + \frac{6}{3-z}$

i. Sketch the graph of r(z). Label all asymptotes, holes, and zeros.



- **F*** Let $p(x) = 2x^3 + 5x^2 + 4x + 3$ and q(x) = 2x + 1
 - i. Does $r(x) = \frac{p(x)}{q(x)}$ have a horizontal or slant asymptote? Neither.
 - ii. Divide p(x) ÷ q(x) and ignore the remainder. What does this suggest about the (non vertical) asymptote of r(x)?
 Dividing and ignoring the remainder obtains: x² + 2x + 1. This suggests that the asymptote of r(x) is a parabola.
 - iii. Assume a(x) is a fourth degree polynomial, and b(x) is a linear. Assuming b(x) is not a factor of a(x), what might the (non vertical) asymptote of $f(x) = \frac{a(x)}{b(x)}$ look like?

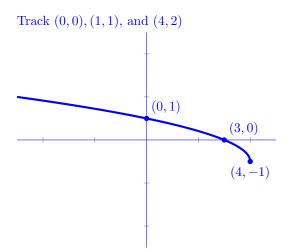
Dividing a degree four polynomial by a linear term yields a third degree polynomial. So the asymptote of f(x) would be a *cubic function*.

A Solve
$$\frac{3x-1}{x^2+1} = 1$$
.
 $x = 1, 2$
B Solve $\frac{1}{t+3} + \frac{1}{t-3} = \frac{t^2-3}{t^2-9}$.
 $t = -1$
C Solve $\frac{4t}{t^2+4} \ge 0$.
 $[0,\infty)$
D Solve $\frac{2t+6}{t^2+t-6} < 1$.
 $(-\infty, -3) \cup (-3, 2) \cup (4, \infty)$
E Solve $\frac{3z-1}{z^2+1} \le 1$.
 $(-\infty, 1] \cup [2,\infty)$

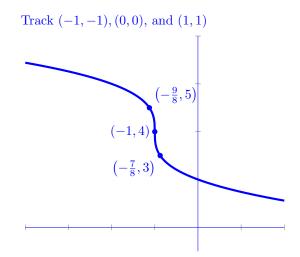
F* Solve $\frac{2x^2 - 5x + 4}{3x^2 + 1} < 0$, justify your answer. $3x^2 + 1$ is always positive, use the discriminant and vertex form to show that $2x^2 - 5x + 4$ is also always positive, so there are no solutions.

A Let $f(x) = \sqrt{4 - x} - 1$

- i. Write the parent function P(x) for f. $P(x) = \sqrt{x}$
- ii. Track at least three points from P(x) and use them to graph f(x).

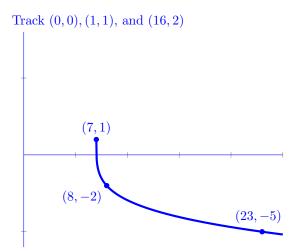


- **B** Let $f(x) = -\sqrt[3]{8x+8} + 4$
 - i. Write the parent function P(x) for f. $P(x) = \sqrt[3]{x}$
 - ii. Track at least three points from P(x) and use them to graph f(x).



C Let $f(x) = -3\sqrt[4]{x-7} + 1$

- i. Write the parent function P(x) for f. $P(x) = \sqrt[4]{x}$
- ii. Track at least three points from P(x) and use them to graph f(x).



D Let
$$d(x) = \frac{5x}{\sqrt[3]{x^3 + 8}}$$

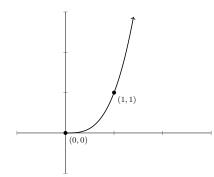
i. State the domain of $d(x)$.
 $(-\infty, -2) \cup (-2, \infty)$
E Let $z(x) = \sqrt{x(x+5)(x-4)}$
i. State the domain of $z(x)$.
 $[-5, 0] \cup [4, \infty)$

F Let
$$c(x) = \sqrt[6]{\frac{x^2 + x - 6}{x^2 - 2x - 15}}$$

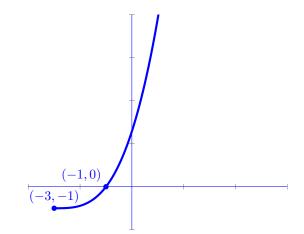
i. State the domain of c(x). $(-\infty, -3) \cup (-3, 2] \cup (5, \infty)$ **A** Let $c(x) = x^{\frac{4}{7}}$

- i. List the intervals where c(x) is increasing (if any exist). (0, ∞)
- ii. List the intervals where c(x) is decreasing (if any exist). $(-\infty, 0)$
- iii. List the intervals where c(x) is concave up (if any exist). No intervals exist.
- iv. List the intervals where c(x) is concave down (if any exist). $(-\infty, 0) \cup (0, \infty)$
- **B** Let $b(t) = t^{\frac{10}{4}}$
 - i. List the intervals where c(x) is increasing (if any exist). (0, ∞)
 - ii. List the intervals where c(x) is decreasing (if any exist). No intervals exist.
 - iii. List the intervals where c(x) is concave up (if any exist). (0, ∞)
 - iv. List the intervals where c(x) is concave down (if any exist). No intervals exist.

C The graph $g(t) = t^{\pi}$ is shown (where $\pi \approx 3.1415...$).



i. Track the points provided on g(t) to graph $G(t) = \left(\frac{t+3}{2}\right)^{\pi} - 1$



D Let
$$f(x) = x^{\frac{3}{2}}(x-7)^{\frac{1}{3}}$$

- i. State the domain of f(x). $[0,\infty)$
- **E** Let $g(t) = t^{\frac{3}{2}}(t-2)^{-\frac{1}{2}}$
 - i. State the domain of f(x). (2, ∞)
- \mathbf{F}^* Let $g(t) = 4t(9-t^2)^{-\sqrt{2}}$
 - i. State the domain of g(t). (-3,3)

- **A** Solve the equation $2x + 1 = (3 3x)^{\frac{1}{2}}$ $x = \frac{1}{4}$
- **B** Solve the equation $(2x+1)^{\frac{1}{2}} = 3 + (4-x)^{\frac{1}{2}}$ x = 4
- **C** Solve the equation $2t^{\frac{1}{3}} = 1 3t^{\frac{2}{3}}$ $t = -1, \frac{1}{27}$
- **D** Solve the inequality $\sqrt[3]{x} > x$, express your answer in interval notation. $(-\infty, -1) \cup (0, 1)$
- **E** Solve the inequality $(2-3x)^{\frac{1}{3}} > 3x$, express your answer in interval notation. $\left(-\infty, \frac{1}{3}\right)$
- **F** Solve the inequality $3(x-1)^{\frac{1}{3}} + x(x-1)^{-\frac{2}{3}} \ge 0$, express your answer in interval notation. $\left[\frac{3}{4}, 1\right) \cup (1, \infty)$