MATH1300 Selected Challenge Problems Volume I SOLUTIONS

Precalculus Peer Assisted Learning

February 3, 2025

Solution Preface:

I make no guarantee that these solutions are free of typos or errors. I have done my best to ensure they are all correct; however, you should always double-check my solutions with another resource if you are unsure whether they are accurate.

Function graphs in this packet are generated by a computer and may not look exactly like the ones you draw. Remember, you are not a computer. The most important skill to develop is your ability to analyze key information about the graph and sketch a relatively accurate picture.

Roman

- **A** Observe the following equation: 2xy = 4.
 - i. Does this equation represent y as a function of x? Yes
 - ii. If so, write the domain of the equation as set, if not, provide an example where it fails as a function.

 $\{x\mid x\in\mathbb{R}\text{ and }x\neq 0\}$

 ${\bf B}\,$ Observe the set of ordered pairs

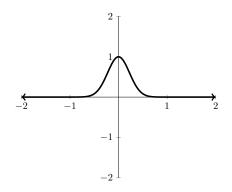
 $\{(-3,9), (1,1), (3,1), (0,0), (-2,4), (-3,7), (4,0)\}$

- i. Does the set of ordered pairs represent a function? No
- ii. If so, write the domain as a set, if not, provide an example where it fails as a function. f(-3) = 9 = 7
- **C** Observe the following data table.

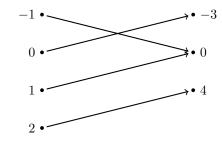
x	y
-3	3
-2	2
-1	1
0	0
1	1
2	2
3	3
-	

- i. Does the given table represent y as a function of x? Explain. Yes
- ii. Write the domain of the table as a set. $\{-3,-2,-1,0,1,2,3\}$
- iii. Write the range of the table as a set. $\{0,1,2,3\}$

D Observe the graph

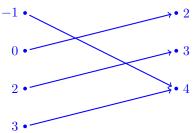


- i. Does the graph represent a function? Explain. Yes, passes vertical line test.
- ii. Write the domain of the graph using interval notation. $(-\infty, \infty)$
- iii. Write the range of the graph using interval notation. (0, 1]
- **E** Consider the function f as a mapping diagram shown:

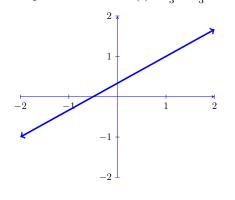


- i. Write the domain of f as a set. $\{-1,0,1,2\}$
- ii. Write the range of f as a set. $\{-3,0,4\}$
- iii. Find f(0) and solve f(x) = 0. f(0) = -3 and f(x) = 0 implies x = -1 or x = 1.
- iv. Write f as a set of ordered pairs. $\{(-1,0),(0,-3),(1,0),(2,4)\}$

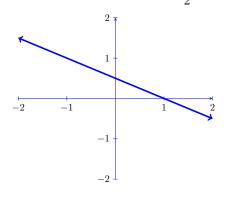
- ${\bf F} \ {\rm Let} \ g = \{(-1,4), (0,2), (2,3), (3,4)\}$
 - i. Write the domain of g as a set. $\{-1,0,2,3\}$
 - ii. Write the range of g as a set. $\{2,3,4\}$
 - iii. Find g(0) and solve g(x) = 0. g(0) = 2 and g(x) = 0 has no solution.
 - iv. Create a mapping diagram for g.



A Graph the function $h(t) = \frac{2}{3}t + \frac{1}{3}$.

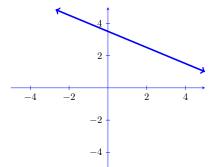


- i. What is the slope? $\frac{2}{3}$
- ii. State the axis intercepts, if they exist. $\left(-\frac{1}{2},0\right),\left(0,\frac{1}{3}\right)$
- ${\bf B} \ {\rm Graph \ the \ function \ } j(w) = \frac{1-w}{2}$

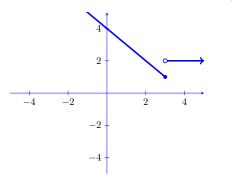


- i. What is the slope? $-\frac{1}{2}$
- ii. State the axis intercepts, if they exist. $\left(0,\frac{1}{2}\right), (1,0)$

C Find the equation of the function that contains the points (1,3) and (3,2).

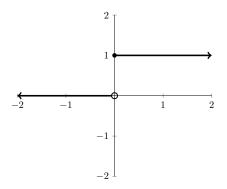


D Graph the piecewise function $f(x) = \begin{cases} 4-x & \text{if } x \leq 3\\ 2 & \text{if } x > 3 \end{cases}$



- i. Write the domain in interval notation. $(-\infty,\infty)$
- ii. Write the range in interval notation. $[1,\infty)$
- iii. State the axis intercepts, if they exist. (0, 4)

E The unit step function is graphed below:

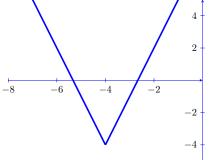


i. Write the equation U(t) of the unit step function.

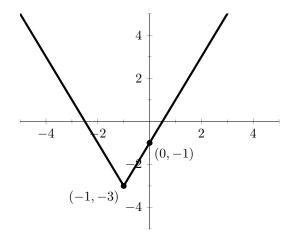
$$U(t) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{if } x \ge 1 \end{cases}$$

- ii. Write the domain of U(t) $(-\infty, \infty)$
- iii. Write the range of U(t) $\{0, 1\}$
- **F*** Explain why the graph of a function f(x) must have at most one *y*-intercept. Assume f(x) has more than one *y*-intercept. Draw a horizontal line on the *y*-axis, this line intersects the graph more than once, and thus it fails the vertical line test and is not a function.

A Graph the function g(t) = 3|t+4| - 4



- i. Write the domain of g(t) in interval notation. $(-\infty, \infty)$
- ii. Write the range of g(t) in interval notation. [-4, ∞)
- iii. State the axis intercepts, if they exist. (0, 8)
- **B** The graph of F(x) is shown below:

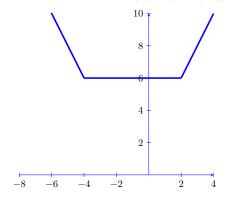


i. Write piecewise function definition of F(x).

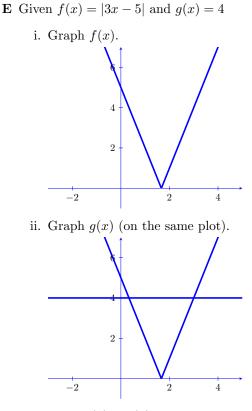
$$F(x) = \begin{cases} -2x - 5 & \text{if } x < -1\\ 2x - 1 & \text{if } x \ge 1 \end{cases}$$

- ii. State the domain of F(x). $(-\infty, \infty)$
- iii. State the range of F(x). $[-3,\infty)$

C Graph the function g(x) = |t+4| + |t-2|.



- i. Write the domain of g(x) using interval notation. $(-\infty, \infty)$
- ii. Write the range of g(x) using interval notation. $[6,\infty)$
- iii. State axis intercepts, if they exist. (0, 6)
- **D** Solve the equation |3x 2| = |2x + 7|.
 - i. Write the solutions as a set. $\{-1,9\}$



- iii. Solve $f(x) \le g(x)$. Write your answer in interval notation. $\begin{bmatrix} \frac{1}{3}, 3 \end{bmatrix}$
- **F*** Show that if d is a real number with d > 0, the solution to |x a| < d is the interval: (a d, a + d). That is, an interval centered at a with 'radius' d.

Proof. From the definition of absolute value we know that the distance between x and a must be less than d, we can rephrase this with the relationship -d < x - a < d. Adding a to both sides we obtain -d + a < x < d + a. With some rearranging we obtain a - d < x < a + d which provides the solution interval (a - d, a + d) for x.

A Let $f(x) = x^2 - 2x - 8$

- i. Complete the square on f(x). $f(x) = (x - 1)^2 - 9$
- ii. Write the vertex. (1, -9)
- iii. Find the axis intercepts. (-2,0), (4,0)

iv. Graph
$$f(x)$$
.

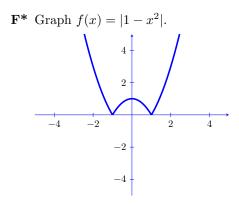
$$\begin{array}{c}
10 \\
5 \\
-10 \\
-5 \\
-5 \\
-5 \\
-5 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\
-10 \\$$

B Let $h(t) = -3t^2 + 5t + 4$

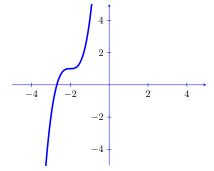
- i. Compute the discriminant of h(t). How many real zeros does h(t) have? 72, this means the function has two positive real roots.
- ii. Find the zero(s) of h(t) if they exist, write your solutions as a set. $\left\{\frac{5-\sqrt{73}}{6}, \frac{5+\sqrt{73}}{6}\right\}$

C Let
$$g(x) = x^2 - 3x + 9$$

- i. Is g(x) factorable? No
- ii. If yes, write g(x) in factored form. If not, explain why. The discriminant of g(x) is -27, which implies that the function has no real zeros. Therefore it is not factorable.
- **D** Solve the inequality $3x^2 \le 11x + 4$, write your answer in interval notation. $\left[-\frac{1}{3}, 4\right]$
- **E** Solve the inequality $5t + 4 \le 3t^3$, write your answer in interval notation. $\left(-\infty, \frac{5-\sqrt{73}}{6}\right] \cup \left[\frac{5+\sqrt{73}}{6}, \infty\right)$

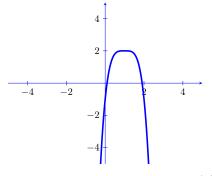


- **A** Let $g(x) = 3x^5 2x^2 + x + 1$
 - i. Identify the degree of g(x). 5
 - ii. Identify the leading coefficient of g(x). 3
 - iii. Identify the leading term of g(x). $3x^5$
 - iv. Identify the constant term of g(x). 1
 - v. Write the end behavior of g(x). as $x \to \infty$, $f(x) \to \infty$, as $x \to -\infty$, $f(x) \to -\infty$
- **B** Let $f(x) = 3(x+2)^3 + 1$
 - i. Write the parent function P(x) for f(x). $P(x) = x^3$
 - ii. Pick three points from the parent function P(x) and apply the transformations of f(x) to write three points on the graph of f(x).
 - iii. Sketch the graph of f(x).



iv. State the domain and range of f(x) using interval notation. Domain and Range both $(-\infty, \infty)$

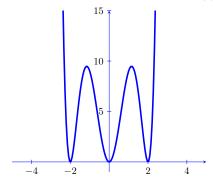
- **C** Let $f(x) = 2 3(x 1)^4$
 - i. Write the parent function P(x) for f(x). $P(x) = x^4$
 - ii. Pick three points from the parent function P(x) and apply the transformations of f(x) to write three points on the graph of f(x).
 - iii. Sketch the graph of f(x).



iv. State the domain and range of f(x) using interval notation. Domain: $(-\infty, \infty)$, Range: $(-\infty, 2]$

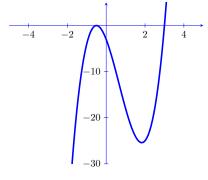
D Let
$$h(t) = t^2(t-2)^2(t+2)^2$$

- i. List all zeros of h(t) and their corresponding multiplicities. $t = -2_{m=2}, t = 0_{m=2}, t = 2_{m=2}$
- ii. Write the end behavior of h(t). as $x \to \infty$, $f(x) \to \infty$, as $x \to -\infty$, $f(x) \to \infty$.
- iii. Sketch a graph of the function h(t).



E Let $g(x) = (2x+1)^2(x-3)$

- i. List all zeros of g(x) and their corresponding multiplicities. $x=-\frac{1}{2}_{m=2}, t=3_{m=1}$
- ii. Write the end behavior of g(x). as $x \to \infty$, $f(x) \to \infty$, as $x \to -\infty$, $f(x) \to -\infty$.
- iii. Sketch a graph of the function g(x).



- **F** Let $f(x) = (x^2 + 1)(x 1)$
 - i. Determine analytically if f(x) is even, odd, or neither neither

A Let $f(z) = 4z^3 + 2z - 3$ and g(z) = z - 3

- i. Compute f(z)/g(z). $(4z^3 + 2z - 3) \div (z - 3) = (4x^2 + 12z + 38) R11$
- ii. Write f(z) as an expression involving g(z), a quotient, and remainder (if it exists). $(4z^3 + 2z - 3) = (z - 3)(4z^2 + 12z + 38) + 11$
- **B** Let $f(x) = 2x^3 x + 1$ and $g(x) = x^2 + x + 1$
 - i. Compute f(x)/g(x). $(2x^3 - x + 1) \div (x^2 + x + 1) = (2x - 2) R(3 - x)$
 - ii. Write f(x) as an expression involving g(x), a quotient, and remainder (if it exists). $(2x^3 - x + 1) = (2x - 2)(x^2 + x + 1) + (3 - x)$
- **C** Let $a(x) = x^4 6x^2 + 9$ and $b(x) = (x \sqrt{3})$
 - i. Compute a(x)/b(x). $(x^4 - 6x^2 + 9) \div (x - \sqrt{3}) = (x^3 + \sqrt{3}x^2 - 3x - 3\sqrt{3}) R0$
 - ii. Write a(x) as an expression involving b(x), a quotient, and remainder (if it exists). $x^4 - 6x^2 + 9 = (x^3 + \sqrt{3}x^2 - 3x - 3\sqrt{3})(x - \sqrt{3})$
- **D** Let $g(z) = z^3 + 2z^2 3z 6$ be a polynomial function with a known real zero of c = -2
 - i. Find the remaining real zeros of g(z) $z = -2, \sqrt{3}, -\sqrt{3}$
- **E** Let $x^3 6x^2 + 11x 6$ be a polynomial function with a known real zero of c = 1
 - i. Find the remaining real zeros of g(z)x = 1, 2, 3
- **F*** Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial function with the property that $a_n + a_{n-1} + \dots + a_1 + a_0 = 0$. (That is, the sum of the coefficients and the constant term is 0.)
 - i. Show that (x-1) is a factor of f(x).

Proof.

If (x-1) is a factor then f(1) = 0. Plug in x = 1 to f(x) to obtain $f(1) = (a_n)1 + (a_{n-1})1 + \cdots + (a_1)1 + (a_0)1$ which simplifies to $a_n + a_{n-1} + \cdots + a_1 + a_0$. By our assumption, $a_n + a_{n-1} + \cdots + a_1 + a_0 = 0$. So f(1) = 0 and thus (x-1) is a factor of f.