MATH1300 Selected Challenge Problems Volume III SOLUTIONS

Precalculus Peer Assisted Learning

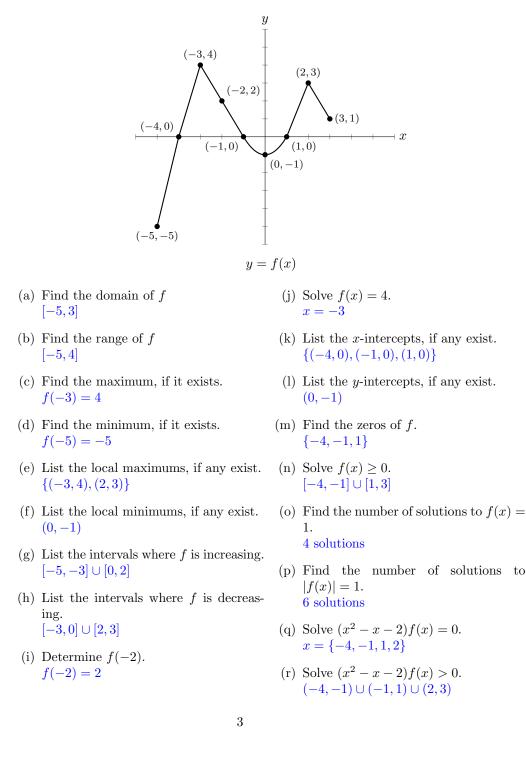
April 1, 2025

Solution Preface:

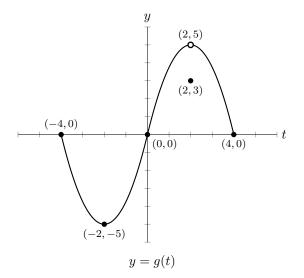
I make no guarantee that these solutions are free of typos or errors. I have done my best to ensure they are all correct; however, you should always double-check my solutions with another resource if you are unsure whether they are accurate.

Function graphs in this packet are generated by a computer and may not look exactly like the ones you draw. Remember, you are not a computer. The most important skill to develop is your ability to analyze key information about the graph and sketch a relatively accurate picture.

Roman



B Given the graph provided, answer all of the following questions.



- (a) Find the domain of g. [-4,4]
- (b) Find the range of g. [-5,5)
- (c) Find the maximum, if it exists. none
- (d) Find the minimum, if it exists. g(-2) = -5
- (e) List of the local maximums, if any exist.
- (f) List the local minimums, if any exist. $\{(-2, -5), (2, 3)\}$
- (g) List the intervals where g is increasing. [-2, 2)
- (h) List the intervals where g is decreasing. $[-4, -2] \cup (2, 4]$
- (i) Determine g(2). g(2) = 3
- (j) Solve g(t) = -5t = -2

- (k) List the *t*-intercepts, if any exists. $\{(-4,0), (0,0), (4,0)\}$
- List the *y*-intercepts, if any exist.
 (0,0)
- (m) Find the zeros of g. $\{-4, 0, 4\}$
- (n) Solve $g(t) \le 0$. $[-4, 0] \cup \{4\}$
- (o) Find the domain of $G(t) = \frac{g(t)}{t+2}$ [-4,-2) \cup (-2,4]

(p) Solve
$$\frac{g(t)}{t+2} \le 0$$

 $\{-4\} \cup (-2,0] \cup \{4\}$

- (q) How many solutions are there to $[g(t)]^2 = 9?$ 5 solutions
- (r) Does g appear to be even, odd, or neither?neither

i.
$$(f+g)(2)$$

ii. $\left(\frac{f}{g}\right)(0)$
iii. $(fg)\left(\frac{1}{2}\right)$

B Let f be the function defined by

$$f = \{(-3,4), (-2,2), (-1,0), (0,1), (1,3), (2,4), (3,-1)\}$$

and let g be the function defined by

$$g = \{(-3,-2), (-2,0), (-1,-4), (0,0), (1,-3), (2,1), (3,2)\}$$

Compute the indicated value if it exists.

i.
$$(g+f)(1)$$

0
ii. $\left(\frac{f}{g}\right)(-2)$
does not exist
iii. $(gf)(-3)$
 -8

C Let f(x) = x - 1 and $g(x) = \frac{1}{x - 1}$, simplify the following expressions.

i.
$$(f+g)(x)$$
$$\frac{x^2-2x+2}{x-1}$$
ii.
$$(f-g)(x)$$
$$\frac{x^2-2x}{x-1}$$
iii.
$$(fg)(x)$$
1
iv.
$$\left(\frac{f}{g}\right)(x)$$
$$x^2-2x+1$$

5.2

D Let $r(x) = \frac{3-x}{x+1}$.

- i. Find nontrivial¹ functions f and g so that r = fg. Multiple solutions possible, one example: f(x) = 3 - x and $g(x) = \frac{1}{x+1}$.
- **E** Let f(x) = -3x + 5.
 - i. Find and simplify the difference quotient using the formula: $\frac{f(x+h)-f(x)}{h}$ –3
- **F** Let $f(x) = x x^2$.
 - i. Find and simplify the difference quotient using the formula: $\frac{f(x+h)-f(x)}{h} -2x h + 1$

¹Functions like f(x) = 1 do not count.

- **A** Let f(x) = 4x + 5 and $g(t) = \sqrt{t}$, compute the following compositions, if any exist.
 - i. $(g \circ f)(0)$ $\sqrt{5}$ ii. $(f \circ f)(2)$ 57iii. $(g \circ f)(-3)$ non real answer
- **B** Let f be the function defined by

$$f = \{(-3,4), (-2,2), (-1,0), (0,1), (1,3), (2,4), (3,-1)\}$$

and let g be the function defined by

$$g = \{(-3, -2), (-2, 0), (-1, -4), (0, 0), (1, -3), (2, 1), (3, 2)\}$$

Compute the indicated value if it exists.

i.
$$(f \circ g)(3)$$

4
ii. $(f \circ g)(-3)$
2
iii. $g(f(g(0)))$
-3
iv. $f(f(f(f(1)))))$

C Let $f(x) = x^2 - x + 1$ and g(t) = 3t - 5. Simplify the indicated composition.

i.
$$(g \circ f)(x)$$

 $3x^2 - 3x - 2$
ii. $(f \circ g)(t)$
 $9t^2 - 33t + 31$

D Let $f(x) = x^2 - x - 1$ and $g(t) = \sqrt{t-5}$. Simplify the indicated composition.

i.
$$(g \circ f)(x)$$
$$\sqrt{x^2 - x - 6}$$
ii.
$$(f \circ g)(t)$$
$$t - 6 - \sqrt{t - 5}$$

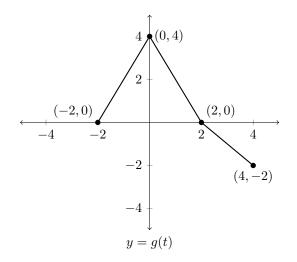
E Let f(x) = -2x, $g(t) = \sqrt{t}$, and h(s) = |s|. Simplify the indicated composition.

i.
$$(f \circ g \circ h)(s) -2\sqrt{|s|}$$
ii.
$$(h \circ f \circ g)(t) -2\sqrt{t}$$
iii.
$$(g \circ h \circ f)(x) -\sqrt{2|x|}$$

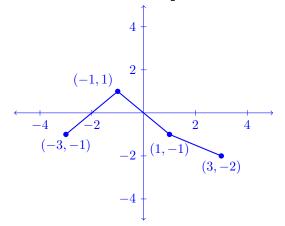
F Write $c(x) = \frac{x^2}{x^4 + 1}$ as a composition of two or more non-identity functions. Let $f(x) = x^2$ and $g(x) = \frac{x}{x^2 + 1}$, then define $w(x) = (g \circ f)(x)$.

- A Suppose (2, -3) is on the graph of y = f(x). Using function transformations, find a point on the graph of y = 3f(2x) 1. (1, -10)
- **B** Suppose (2, -3) is on the graph of y = f(x). Using function transformations, find a point on the graph of y = 5f(2x+1) + 3. $\left(\frac{1}{2}, -12\right)$
- C Suppose (2, -3) is on the graph of y = f(x). Using function transformations, find a point on the graph of $f\left(\frac{7-2x}{4}\right)$. $\left(-\frac{1}{2}, -3\right)$
- **D** Suppose (2, -3) is on the graph of y = f(x). Using function transformations, find a point on the graph of $\frac{4 f(3x 1)}{7}$. (1,1)

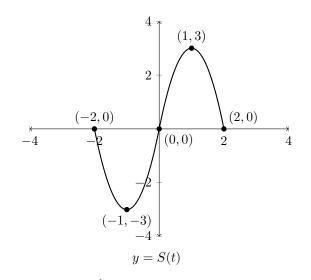
 ${\bf E}\,$ Given the graph y=g(t)



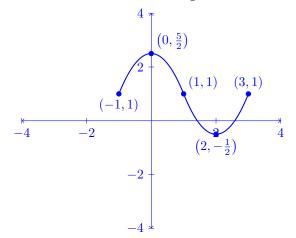
i. Graph the transformation $\frac{1}{2}g(t+1) - 1$



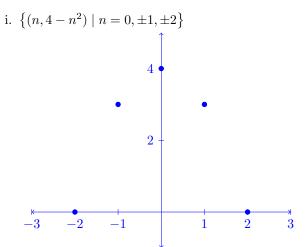
 ${\bf F}\,$ Given the graph y=S(t)



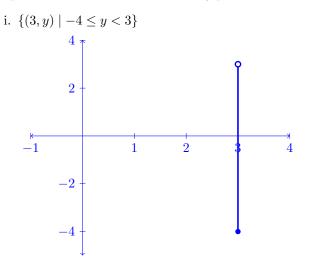
i. Graph the transformation $y = \frac{1}{2}S(-t+1) + 1$



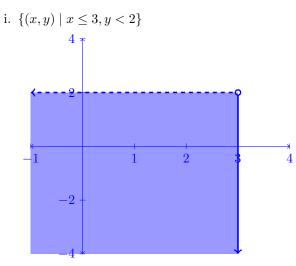
A Graph the indicated relation in the xy-plane.



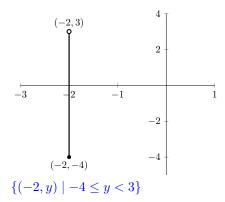
 ${\bf B}\,$ Graph the indicated relation in the $xy\mbox{-}{\rm plane}.$



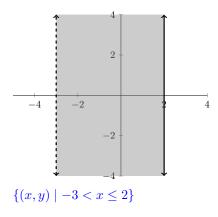
 ${\bf C}\,$ Graph the indicated relation in the $xy\mbox{-}{\rm plane}.$



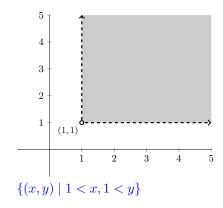
 ${\bf D}$ Describe the given relation using set-builder notation.



E Describe the given relation using set-builder notation.

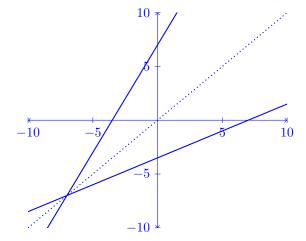


 ${\bf F}\,$ Describe the given relation using set-builder notation.



A Let f(x) = 2x + 7 and $g(x) = \frac{x - 7}{2}$.

i. Graph f(x) and g(x) on a coordinate plane.



ii. Are f(x) and g(x) inverse? Justify your answer. Yes, f(x) and g(x) are reflected over the line y = x

B Let
$$g(t) = \frac{t-2}{3} + 4$$
.

- i. Show that g(t) is one-to-one.
- ii. Find the inverse of g(t). $g^{-1}(t) = 3t - 10$

C Let
$$f(x) = \sqrt{3x - 1} + 5$$
.

- i. Show that f(x) is one-to-one.
- ii. Find the inverse of f(t). $f^{-1}(x) = \tfrac{1}{3}(x-5)^2 + \tfrac{1}{3}, x \geq 5$
- **D** Let $f(x) = \sqrt[5]{3x 1}$
 - i. Show that f(x) is one-to-one.
 - ii. Find $f^{-1}(x)$. $f^{-1}(x) = \frac{1}{3}x^5 + \frac{1}{3}$

E Let $h(x) = \frac{2x-1}{3x+4}$ i. Show that h(x) is one-to-one ii. Find $h^{-1}(x)$. $f^{-1}(x) = \frac{4x+1}{2-3x}$

F* Under what conditions is f(x) = mx + b, $m \neq 0$ its own inverse? Prove your answer.

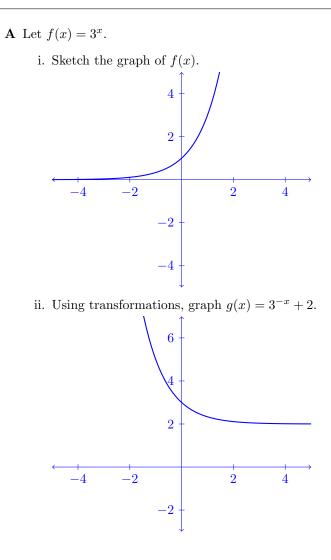
Proof.

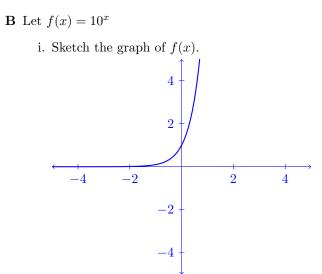
Let f(x) = mx + b with $m \neq 0$. Then $f^{-1}(x) = \frac{x-b}{m} = \frac{1}{m}x - \frac{b}{m}$. For f to be its own inverse we need to verify that $f(x) = f^{-1}(x)$ or in other words that $mx + b = \frac{1}{m}x - \frac{b}{m}$. This yields two equations which must both be true.

$$m = \frac{1}{m} \tag{1}$$

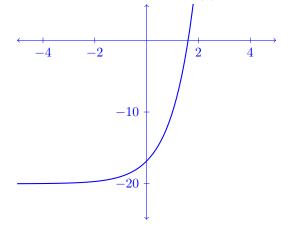
$$b = -\frac{b}{m} \tag{2}$$

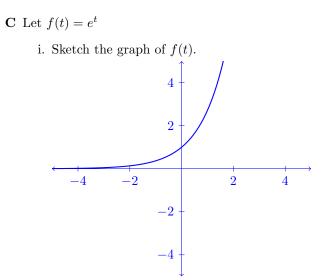
Solving for (1) we obtain $m^2 - 1 = 0$ which yields $m = \pm 1$ and solving for (2) we obtain m = -1. However the number of solutions for m depends on the value of b. If $b \neq 0$ then m must be -1, however if b = 0 either m = 1 or m = -1 will work.



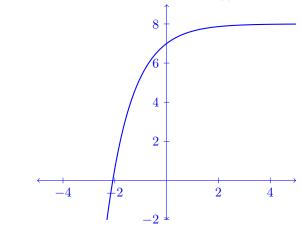


ii. Using transformations, graph $g(x) = 10^{\frac{x+1}{2}} - 20$.





ii. Using transformations, graph $g(t) = 8 - e^{-t}$.



D State the domain of $T(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $(-\infty, \infty)$

- A Rewrite the expression: log(100) = 2, so that it does not contain a logarithm. $100 = 10^2$
- **B** Evaluate $\log_2(32)$. 5
- C Evaluate $\log_4(8)$.
- **D** Find the domain of $f(x) = \log_7(t^2 + 9t + 18)$. $(-\infty, -6) \cup (-3, \infty)$
- **E** Find the domain of $f(x) = \ln(x^2 + 1)$. $(-\infty, \infty)$
- **F** Find the domain of $g(t) = \ln(7-t) + \ln(t-4)$. (4,7)

- **A** Expand and simplify: $\ln\left(\frac{\sqrt{z}}{xy}\right)$. $\frac{1}{2}\ln(z) - \ln(x) - \ln(y)$
- **B** Expand and simplify: $\ln\left(\sqrt[4]{\frac{xy}{ez}}\right)$. $\frac{1}{4}\ln(x) + \frac{1}{4}\ln(y) - \frac{1}{4} - \frac{1}{4}\ln(z)$
- C Write $\frac{1}{2}\log_3(x) 2\log_3(y) \log_3(z)$ as a single logarithm. $\log_3\left(\frac{\sqrt{x}}{y^2z}\right)$
- **D** Write $\log_5(x) 3$ as a single logarithm. $\log_5\left(\frac{x}{125}\right)$
- **E** Write $\log_2(x) + \log_4(x)$ as a single logarithm. $\log_2(x^{3/2})$
- \mathbf{F}^* With the product rule given, prove the quotient rule and power rule for logarithms.

Proof.

Power Rule:
$$\log_b(x^y) = \log_b(\underbrace{x \times \cdots \times x}_{y \text{ times}}) = \underbrace{\log_b(x) + \cdots + \log_b(x)}_{y \text{ times}} = y \times \log_b(x)$$

Quotient Rule: $\log_b\left(\frac{x}{y}\right) = \log_b\left(x\frac{1}{y}\right) = \log_b\left(xy^{-1}\right) = \log_b(x) + \log_b(y^{-1})$ = $\log_b(x) + (-1 \times \log_b(y)) = \log_b(x) - \log_b(y)$

- **A** Solve $2^{(t^3-t)} = 1$. $t = \{-1, 0, 1\}$
- **B** Solve $3^{7x} = 81^{4-2x}$. $x = \frac{16}{15}$
- C Solve $e^{2t} = e^t + 6$. $t = \ln(3)$
- **D*** Solve $7^{3+7x} = 3^{4-2x}$. $x = \frac{4\ln(3) - 3\ln(7)}{7\ln(7) + 2\ln(3)}$
 - **E** Solve $e^{-x} xe^{-x} \ge 0$, write your answer in interval notation. $(-\infty, 1]$
 - **F** Solve $(1 e^t)t^{-1} \le 0$, write your answer in interval notation. $(-\infty, 0) \cup (0, \infty)$

6.4

- A Solve $10 \log \left(\frac{x}{10^{-12}}\right) = 150.$ 10^3
- **B** Solve $3\ln(t) 2 = 1 \ln(t)$. $t = e^{3/4}$
- **C** Solve $\ln(x+1) \ln(x) = 3$. $x = \frac{1}{e^3 - 1}$
- **D** Solve $\ln(t^2) = (\ln(t))^2$. $t = \{1, e^2\}$
- **E** Solve $\frac{1 \ln(t)}{t^2} < 0$, write your answer in interval notation. (e, ∞)
- **F*** Solve $\ln(t^2) \leq (\ln(t))^2$, write your answer in interval notation. $(0,1] \cup [e^2,\infty)$